Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 729-748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37878432

RESUMO

Blockchain data mining has the potential to reveal the operational status and behavioral patterns of anonymous participants in blockchain systems, thus providing valuable insights into system operation and participant behavior. However, traditional blockchain analysis methods suffer from the problems of being unable to handle the data due to its large volume and complex structure. With powerful computing and analysis capabilities, graph learning can solve the current problems through handling each node's features and linkage relationships separately and exploring the implicit properties of data from a graph perspective. This paper systematically reviews the blockchain data mining tasks based on graph learning approaches. First, we investigate the blockchain data acquisition method, integrate the currently available data analysis tools, and divide the sampling method into rule-based and cluster-based techniques. Second, we classify the graph construction into transaction-based blockchain and account-based methods, and comprehensively analyze the existing blockchain feature extraction methods. Third, we compare the existing graph learning algorithms on blockchain and classify them into traditional machine learning-based, graph representation-based, and graph deep learning-based methods. Finally, we propose future research directions and open issues which are promising to address.

2.
Sensors (Basel) ; 23(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005421

RESUMO

Machine learning, powered by cloud servers, has found application in medical diagnosis, enhancing the capabilities of smart healthcare services. Research literature demonstrates that the support vector machine (SVM) consistently demonstrates remarkable accuracy in medical diagnosis. Nonetheless, safeguarding patients' health data privacy and preserving the intellectual property of diagnosis models is of paramount importance. This concern arises from the common practice of outsourcing these models to third-party cloud servers that may not be entirely trustworthy. Few studies in the literature have delved into addressing these issues within SVM-based diagnosis systems. These studies, however, typically demand substantial communication and computational resources and may fail to conceal classification results and protect model intellectual property. This paper aims to tackle these limitations within a multi-class SVM medical diagnosis system. To achieve this, we have introduced modifications to an inner product encryption cryptosystem and incorporated it into our medical diagnosis framework. Notably, our cryptosystem proves to be more efficient than the Paillier and multi-party computation cryptography methods employed in previous research. Although we focus on a medical application in this paper, our approach can also be used for other applications that need the evaluation of machine learning models in a privacy-preserving way such as electricity theft detection in the smart grid, electric vehicle charging coordination, and vehicular social networks. To assess the performance and security of our approach, we conducted comprehensive analyses and experiments. Our findings demonstrate that our proposed method successfully fulfills our security and privacy objectives while maintaining high classification accuracy and minimizing communication and computational overhead.


Assuntos
Privacidade , Máquina de Vetores de Suporte , Humanos , Segurança Computacional , Confidencialidade , Aprendizado de Máquina
3.
Comput Methods Programs Biomed ; 226: 107109, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174422

RESUMO

BACKGROUND AND OBJECTIVE: COVID-19 outbreak has become one of the most challenging problems for human being. It is a communicable disease caused by a new coronavirus strain, which infected over 375 million people already and caused almost 6 million deaths. This paper aims to develop and design a framework for early diagnosis and fast classification of COVID-19 symptoms using multimodal Deep Learning techniques. METHODS: we collected chest X-ray and cough sample data from open source datasets, Cohen and datasets and local hospitals. The features are extracted from the chest X-ray images are extracted from chest X-ray datasets. We also used cough audio datasets from Coswara project and local hospitals. The publicly available Coughvid DetectNow and Virufy datasets are used to evaluate COVID-19 detection based on speech sounds, respiratory, and cough. The collected audio data comprises slow and fast breathing, shallow and deep coughing, spoken digits, and phonation of sustained vowels. Gender, geographical location, age, preexisting medical conditions, and current health status (COVID-19 and Non-COVID-19) are recorded. RESULTS: The proposed framework uses the selection algorithm of the pre-trained network to determine the best fusion model characterized by the pre-trained chest X-ray and cough models. Third, deep chest X-ray fusion by discriminant correlation analysis is used to fuse discriminatory features from the two models. The proposed framework achieved recognition accuracy, specificity, and sensitivity of 98.91%, 96.25%, and 97.69%, respectively. With the fusion method we obtained 94.99% accuracy. CONCLUSION: This paper examines the effectiveness of well-known ML architectures on a joint collection of chest-X-rays and cough samples for early classification of COVID-19. It shows that existing methods can effectively used for diagnosis and suggesting that the fusion learning paradigm could be a crucial asset in diagnosing future unknown illnesses. The proposed framework supports health informatics basis on early diagnosis, clinical decision support, and accurate prediction.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico por imagem , Raios X , SARS-CoV-2 , Fala , Tosse/diagnóstico por imagem , Diagnóstico Precoce
4.
Telecommun Syst ; 81(1): 125-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35879968

RESUMO

With rapid advancements in the technology, almost all the devices around are becoming smart and contribute to the Internet of Things (IoT) network. When a new IoT device is added to the network, it is important to verify the authenticity of the device before allowing it to communicate with the network. Hence, access control is a crucial security mechanism that allows only the authenticated node to become the part of the network. An access control mechanism also supports confidentiality, by establishing a session key that accomplishes secure communications in open public channels. Recently, blockchain has been implemented in access control protocols to provide a better security mechanism. The foundation of this survey article is laid on IoT, where a detailed description on IoT, its architecture and applications is provided. Further, various security challenges and issues, security attacks possible in IoT and their countermeasures are also provided. We emphasize on the blockchain technology and its evolution in IoT. A detailed description on existing consensus mechanisms and how blockchain can be used to overpower IoT vulnerabilities is highlighted. Moreover, we provide a comprehensive description on access control protocols. The protocols are classified into certificate-based, certificate-less and blockchain-based access control mechanisms for better understanding. We then elaborate on each use case like smart home, smart grid, health care and smart agriculture while describing access control mechanisms. The detailed description not only explains the implementation of the access mechanism, but also gives a wider vision on IoT applications. Next, a rigorous comparative analysis is performed to showcase the efficiency of all protocols in terms of computation and communication costs. Finally, we discuss open research issues and challenges in a blockchain-envisioned IoT network.

5.
IEEE Trans Netw Sci Eng ; 9(1): 332-344, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35582324

RESUMO

The COVID-19 pandemic has caused serious consequences in the last few months and trying to control it has been the most important objective. With effective prevention and control methods, the epidemic has been gradually under control in some countries and it is essential to ensure safe work resumption in the future. Although some approaches are proposed to measure people's healthy conditions, such as filling health information forms or evaluating people's travel records, they cannot provide a fine-grained assessment of the epidemic risk. In this paper, we propose a novel epidemic risk assessment method based on the granular data collected by the communication stations. We first compute the epidemic risk of these stations in different intervals by combining the number of infected persons and the way they pass through the station. Then, we calculate the personnel risk in different intervals according to the station trajectory of the queried person. This method could assess people's epidemic risk accurately and efficiently. We also conduct extensive simulations and the results verify the effectiveness of the proposed method.

6.
IEEE J Biomed Health Inform ; 25(10): 3752-3762, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33556028

RESUMO

This paper proposes a two-way multi-ringed forest (TMR-Forest) to estimating the malignancy of the pulmonary nodules for false positive reduction (FPR). Based on our previous work of deep decision framework, named MR-Forest, we generate a growing path mode on predefined pseudo-timeline of L time slots to build pseudo-spatiotemporal features. It synchronously works with FPR based on MR-Forest to help predict the labels from a dynamic perspective. Concretely, Mask R-CNN is first used to recommend the bounding boxes of ROIs and classify their pathological features. Afterward, hierarchical attribute matching is introduced to obtain the input ROIs' attribute layouts and select the candidates for their growing path generation. The selected ROIs can replace the fixed-sized ROIs' fitting results at different time slots for data augmentation. A two-stage counterfactual path elimination is used to screen out the input paths of the cascade forest. Finally, a simple label selection strategy is executed to output the predicted label to point out the input nodule's malignancy. On 1034 scans of the merged dataset, the framework can report more accurate malignancy labels to achieve a better CPM score of 0.912, which exceeds those of MR-Forest and 3DDCNNs about 2.8% and 4.7%, respectively.


Assuntos
Neoplasias , Florestas , Humanos
7.
IEEE Internet Things J ; 8(21): 16047-16071, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35782181

RESUMO

This article provides a literature review of state-of-the-art machine learning (ML) algorithms for disaster and pandemic management. Most nations are concerned about disasters and pandemics, which, in general, are highly unlikely events. To date, various technologies, such as IoT, object sensing, UAV, 5G, and cellular networks, smartphone-based system, and satellite-based systems have been used for disaster and pandemic management. ML algorithms can handle multidimensional, large volumes of data that occur naturally in environments related to disaster and pandemic management and are particularly well suited for important related tasks, such as recognition and classification. ML algorithms are useful for predicting disasters and assisting in disaster management tasks, such as determining crowd evacuation routes, analyzing social media posts, and handling the post-disaster situation. ML algorithms also find great application in pandemic management scenarios, such as predicting pandemics, monitoring pandemic spread, disease diagnosis, etc. This article first presents a tutorial on ML algorithms. It then presents a detailed review of several ML algorithms and how we can combine these algorithms with other technologies to address disaster and pandemic management. It also discusses various challenges, open issues and, directions for future research.

8.
IEEE Access ; 9: 51106-51120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36789156

RESUMO

The wide spread of the novel COVID-19 virus all over the world has caused major economical and social damages combined with the death of more than two million people so far around the globe. Therefore, the design of a model that can predict the persons that are most likely to be infected is a necessity to control the spread of this infectious disease as well as any other future novel pandemic. In this paper, an Internet of Things (IoT) sensing network is designed to anonymously track the movement of individuals in crowded zones through collecting the beacons of WiFi and Bluetooth devices from mobile phones to triangulate and estimate the locations of individuals inside buildings without violating their privacy. A mathematical model is presented to compute the expected time of exposure between users. Furthermore, a virus spread mathematical model as well as iterative spread tracking algorithms are proposed to predict the probability of individuals being infected even with limited data.

9.
Ad Hoc Netw ; 111: 102324, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33071687

RESUMO

Unmanned Aerial Vehicles (UAV) have revolutionized the aircraft industry in this decade. UAVs are now capable of carrying out remote sensing, remote monitoring, courier delivery, and a lot more. A lot of research is happening on making UAVs more robust using energy harvesting techniques to have a better battery lifetime, network performance and to secure against attackers. UAV networks are many times used for unmanned missions. There have been many attacks on civilian, military, and industrial targets that were carried out using remotely controlled or automated UAVs. This continued misuse has led to research in preventing unauthorized UAVs from causing damage to life and property. In this paper, we present a literature review of UAVs, UAV attacks, and their prevention using anti-UAV techniques. We first discuss the different types of UAVs, the regulatory laws for UAV activities, their use cases, recreational, and military UAV incidents. After understanding their operation, various techniques for monitoring and preventing UAV attacks are described along with case studies.

10.
Sensors (Basel) ; 20(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171680

RESUMO

Recently, underwater wireless sensor networks (UWSNs) have been considered as a powerful technique for many applications. However, acoustic communications in UWSNs bring in huge QoS issues for time-critical applications. Additionally, excessive control packets and multiple copies during the data transmission process exacerbate this challenge. Faced with these problems, we propose a reliable low-latency and energy-efficient transmission protocol for dense 3D underwater wireless sensor networks to improve the QoS of UWSNs. The proposed protocol exploits fewer control packets and reduces data-packet copies effectively through the co-design of routing and media access control (MAC) protocols. The co-design method is divided into two steps. First, the number of handshakes in the MAC process will be greatly reduced via our forwarding-set routing strategy under the guarantee of reliability. Second, with the help of information from the MAC process, network-update messages can be used to replace control packages through mobility prediction when choosing a route. Simulation results show that the proposed protocol has a considerably higher reliability, and lower latency and energy consumption in comparison with existing transmission protocols for a dense underwater wireless sensor network.

11.
Sensors (Basel) ; 20(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158266

RESUMO

Wi-Fi uploading is considered an effective method for offloading the traffic of cellular networks generated by the data uploading process of mobile crowd sensing applications. However, previously proposed Wi-Fi uploading schemes mainly focus on optimizing one performance objective: the offloaded cellular traffic or the reduced uploading cost. In this paper, we propose an Intelligent Data Uploading Selection Mechanism (IDUSM) to realize a trade-off between the offloaded traffic of cellular networks and participants' uploading cost considering the differences among participants' data plans and direct and indirect opportunistic transmissions. The mechanism first helps the source participant choose an appropriate data uploading manner based on the proposed probability prediction model, and then optimizes its performance objective for the chosen data uploading manner. In IDUSM, our proposed probability prediction model precisely predicts a participant's mobility from spatial and temporal aspects, and we decrease data redundancy produced in the Wi-Fi offloading process to reduce waste of participants' limited resources (e.g., storage, battery). Simulation results show that the offloading efficiency of our proposed IDUSM is (56.54×10-7), and the value is the highest among the other three Wi-Fi offloading mechanisms. Meanwhile, the offloading ratio and uploading cost of IDUSM are respectively 52.1% and (6.79×103). Compared with other three Wi-Fi offloading mechanisms, it realized a trade-off between the offloading ratio and the uploading cost.

12.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086691

RESUMO

With the emergence of vehicular Internet-of-Things (IoT) applications, it is a significant challenge for vehicular IoT systems to obtain higher throughput in vehicle-to-cloud multipath transmission. Network Coding (NC) has been recognized as a promising paradigm for improving vehicular wireless network throughput by reducing packet loss in transmission. However, existing researches on NC do not consider the influence of the rapid quality change of wireless links on NC schemes, which poses a great challenge to dynamically adjust the coding rate according to the variation of link quality in vehicle-to-cloud multipath transmission in order to avoid consuming unnecessary bandwidth resources and to increase network throughput. Therefore, we propose an Adaptive Network Coding (ANC) scheme brought by the novel integration of the Hidden Markov Model (HMM) into the NC scheme to efficiently adjust the coding rate according to the estimated packet loss rate (PLR). The ANC scheme conquers the rapid change of wireless link quality to obtain the utmost throughput and reduce the packet loss in transmission. In terms of the throughput performance, the simulations and real experiment results show that the ANC scheme outperforms state-of-the-art NC schemes for vehicular wireless multipath transmission in vehicular IoT systems.

13.
Sensors (Basel) ; 20(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933114

RESUMO

Cognitive radio (CR) is a critical technique to solve the conflict between the explosive growth of traffic and severe spectrum scarcity. Reasonable radio resource allocation with CR can effectively achieve spectrum sharing and co-channel interference (CCI) mitigation. In this paper, we propose a joint channel selection and power adaptation scheme for the underlay cognitive radio network (CRN), maximizing the data rate of all secondary users (SUs) while guaranteeing the quality of service (QoS) of primary users (PUs). To exploit the underlying topology of CRNs, we model the communication network as dynamic graphs, and the random walk is used to imitate the users' movements. Considering the lack of accurate channel state information (CSI), we use the user distance distribution contained in the graph to estimate CSI. Moreover, the graph convolutional network (GCN) is employed to extract the crucial interference features. Further, an end-to-end learning model is designed to implement the following resource allocation task to avoid the split with mismatched features and tasks. Finally, the deep reinforcement learning (DRL) framework is adopted for model learning, to explore the optimal resource allocation strategy. The simulation results verify the feasibility and convergence of the proposed scheme, and prove that its performance is significantly improved.

14.
IEEE J Biomed Health Inform ; 24(10): 2765-2775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32750974

RESUMO

The emergence of novel COVID-19 is causing an overload on public health sector and a high fatality rate. The key priority is to contain the epidemic and reduce the infection rate. It is imperative to stress on ensuring extreme social distancing of the entire population and hence slowing down the epidemic spread. So, there is a need for an efficient optimizer algorithm that can solve NP-hard in addition to applied optimization problems. This article first proposes a novel COVID-19 optimizer Algorithm (CVA) to cover almost all feasible regions of the optimization problems. We also simulate the coronavirus distribution process in several countries around the globe. Then, we model a coronavirus distribution process as an optimization problem to minimize the number of COVID-19 infected countries and hence slow down the epidemic spread. Furthermore, we propose three scenarios to solve the optimization problem using most effective factors in the distribution process. Simulation results show one of the controlling scenarios outperforms the others. Extensive simulations using several optimization schemes show that the CVA technique performs best with up to 15%, 37%, 53% and 59% increase compared with Volcano Eruption Algorithm (VEA), Gray Wolf Optimizer (GWO), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), respectively.


Assuntos
Algoritmos , Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Modelos Biológicos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , COVID-19 , Biologia Computacional , Simulação por Computador , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , SARS-CoV-2
15.
Sensors (Basel) ; 20(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947860

RESUMO

Cyber-physical systems (CPS) is a setup that controls and monitors the physical world around us. The advancement of these systems needs to incorporate an unequivocal spotlight on making these systems efficient. Blockchains and their inherent combination of consensus algorithms, distributed data storage, and secure protocols can be utilized to build robustness and reliability in these systems. Blockchain is the underlying technology behind bitcoins and it provides a decentralized framework to validate transactions and ensure that they cannot be modified. By distributing the role of information validation across the network peers, blockchain eliminates the risks associated with a centralized architecture. It is the most secure validation mechanism that is efficient and enables the provision of financial services, thereby giving users more freedom and power. This upcoming technology provides internet users with the capability to create value and authenticate digital information. It has the capability to revolutionize a diverse set of business applications, ranging from sharing economy to data management and prediction markets. In this paper, we present a holistic survey of various applications of CPS where blockchain has been utilized. Smart grids, health-care systems, and industrial production processes are some of the many applications that can benefit from the blockchain technology and will be discussed in the paper.

16.
IEEE Access ; 8: 171575-171589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34976555

RESUMO

With the exponentially growing COVID-19 (coronavirus disease 2019) pandemic, clinicians continue to seek accurate and rapid diagnosis methods in addition to virus and antibody testing modalities. Because radiographs such as X-rays and computed tomography (CT) scans are cost-effective and widely available at public health facilities, hospital emergency rooms (ERs), and even at rural clinics, they could be used for rapid detection of possible COVID-19-induced lung infections. Therefore, toward automating the COVID-19 detection, in this paper, we propose a viable and efficient deep learning-based chest radiograph classification (DL-CRC) framework to distinguish the COVID-19 cases with high accuracy from other abnormal (e.g., pneumonia) and normal cases. A unique dataset is prepared from four publicly available sources containing the posteroanterior (PA) chest view of X-ray data for COVID-19, pneumonia, and normal cases. Our proposed DL-CRC framework leverages a data augmentation of radiograph images (DARI) algorithm for the COVID-19 data by adaptively employing the generative adversarial network (GAN) and generic data augmentation methods to generate synthetic COVID-19 infected chest X-ray images to train a robust model. The training data consisting of actual and synthetic chest X-ray images are fed into our customized convolutional neural network (CNN) model in DL-CRC, which achieves COVID-19 detection accuracy of 93.94% compared to 54.55% for the scenario without data augmentation (i.e., when only a few actual COVID-19 chest X-ray image samples are available in the original dataset). Furthermore, we justify our customized CNN model by extensively comparing it with widely adopted CNN architectures in the literature, namely ResNet, Inception-ResNet v2, and DenseNet that represent depth-based, multi-path-based, and hybrid CNN paradigms. The encouragingly high classification accuracy of our proposal implies that it can efficiently automate COVID-19 detection from radiograph images to provide a fast and reliable evidence of COVID-19 infection in the lung that can complement existing COVID-19 diagnostics modalities.

17.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683703

RESUMO

As one of the main applications of the Internet of things (IoT), the vehicular ad-hoc network (VANET) is the core of the intelligent transportation system (ITS). Air-ground integrated vehicular networks (AGIVNs) assisted by unmanned aerial vehicles (UAVs) have the advantages of wide coverage and flexible configuration, which outperform the ground-based VANET in terms of communication quality. However, the complex electromagnetic interference (EMI) severely degrades the communication performance of UAV sensors. Therefore, it is meaningful and challenging to design an efficient anti-interference scheme for UAV data links in AGIVNs. In this paper, we propose an anti-interference scheme, named as Mary-MCM, for UAV data links in AGIVNs based on multi-ary (M-ary) spread spectrum and multi-carrier modulation (MCM). Specifically, the Mary-MCM disperses the interference power by expanding the signal spectrum, such that the anti-interference ability of AGIVNs is enhanced. Besides, by using MCM and multiple-input multiple-output (MIMO) technologies, the Mary-MCM improves the spectrum utilization effectively while ensuring system performance. The simulation results verify that the Mary-MCM achieves excellent anti-interference performance under different EMI combinations.

18.
Sensors (Basel) ; 19(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871229

RESUMO

The explosive number of vehicles has given rise to a series of traffic problems, such as traffic congestion, road safety, and fuel waste. Collecting vehicles' speed information is an effective way to monitor the traffic conditions and avoid vehicles' congestion, however it may threaten vehicles' location and trajectory privacy. Motivated by the fact that traffic monitoring does not need to know each individual vehicle's speed and the average speed would be sufficient, we propose a privacy-preserving traffic monitoring (PPTM) scheme to aggregate vehicles' speeds at different locations. In PPTM, the roadside unit (RSU) collects vehicles' speed information at multiple road segments, and further cooperates with a service provider to calculate the average speed information for every road segment. To preserve vehicles' privacy, both homomorphic Paillier cryptosystem and super-increasing sequence are adopted. A comprehensive security analysis indicates that the proposed PPTM can preserve vehicles' identities, speeds, locations, and trajectories privacy from being disclosed. In addition, extensive simulations are conducted to validate the effectiveness and efficiency of the proposed PPTM scheme.

19.
Sensors (Basel) ; 19(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823597

RESUMO

Many IoT (Internet of Things) systems run Android systems or Android-like systems. With the continuous development of machine learning algorithms, the learning-based Android malware detection system for IoT devices has gradually increased. However, these learning-based detection models are often vulnerable to adversarial samples. An automated testing framework is needed to help these learning-based malware detection systems for IoT devices perform security analysis. The current methods of generating adversarial samples mostly require training parameters of models and most of the methods are aimed at image data. To solve this problem, we propose a testing framework for learning-based Android malware detection systems (TLAMD) for IoT Devices. The key challenge is how to construct a suitable fitness function to generate an effective adversarial sample without affecting the features of the application. By introducing genetic algorithms and some technical improvements, our test framework can generate adversarial samples for the IoT Android application with a success rate of nearly 100% and can perform black-box testing on the system.

20.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857140

RESUMO

Intelligent medical service system integrates wireless internet of things (WIoT), including medical sensors, wireless communications, and middleware techniques, so as to collect and analyze patients' data to examine their physical conditions by many personal health devices (PHDs) in real time. However, large amount of malicious codes on the Android system can compromise consumers' privacy, and further threat the hospital management or even the patients' health. Furthermore, this sensor-rich system keeps generating large amounts of data and saturates the middleware system. To address these challenges, we propose a fog computing security and privacy protection solution. Specifically, first, we design the security and privacy protection framework based on the fog computing to improve tele-health and tele-medicine infrastructure. Then, we propose a context-based privacy leakage detection method based on the combination of dynamic and static information. Experimental results show that the proposed method can achieve higher detection accuracy and lower energy consumption compared with other state-of-art methods.


Assuntos
Internet , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia sem Fio , Segurança Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...